Отдел полупроводниковых ядерных детекторов

Лаб. низкофоновых измерений

1) А.В. Дербин внс, дфмн,

- 2) В.Н. Муратова, нс, кфмн
- 3) С.В. Бахланов вед. инж.
- 4) Д.А. Семенов, асп./ст.лаб.
- 5) Е.В. Унжаков, асп./ст.лаб.
- 6) А.С. Каюнов, аспирант
- 7) И.М. Котина снс кфмн
- 8) Г.В. Пацекина нс
- 9) Л.М.Тухконен нс
- 10) З.М. Крот инж.-техн
- 12) И.С. Драчнев 5 курс
- 13) К.М. Жеронкин 4 курс
- 14) И.С. Патраков 4 курс

В отделе 34 чел. внс – 3; снс – 2; нс – 3; ст. лаб. 2; асп. -1; вед.инж.-12; инж. тех.-5; рег. ап. -1; сл.мех.-1; студ.совм. – 3;

- Гр. физики и технологии ППД 1) А.Х. Хусаинов внс, кфмн 2) А.К. Пустовойт снс кфмн 3) А.А. Афанасьев вед. инж.-эл 4) М.П. Жуков вед. инж.-эл 5) Н.Т. Кислицкий инж.-эл 6) Л.В. Силантьева инж.-эл 6) Л.В. Силантьева инж.-эл 7) П.И. Трофимов инж.-эл 8) Г.Э. Иващенко инж.-тех. 9) Л.И. Пащук инж.-тех. 10) Е.В. Федоров инж.-тех. 11) Е.А. Чмель инж.-тех.
 - Гр. радиохимии 1) А.И. Егоров внс, кфмн 2) Р.И. Крутова вед. инж.
 - 3) В.М. Тюнис вед. инж.

Конст. – технологический уч.

- 1) В.К.Бойцов В.К. вед.инж.-конст.
- 2) Г.Е.Жихаревич инж.-технолог
- 3) А.П.Михайлов сл.мех.с
- 4) В.А.Радаев сл.мех.сб.р.
- 5) Л.Ф.Гусенкова лаб.
- 6) А.И.Терентьева вед. инж

Отдел полупроводниковых ядерных детекторов **Лаборатория низкофоновых измерени**й

Состав (12 чел.): А.В. Дербин внс, дфмн, С.В. Бахланов вед. инж. В.Н. Муратова, нс, кфмн Д.А. Семенов, ст. лаб. Е.В. Унжаков, ст. лаб. А.С. Каюнов, аспирант И.А. Патраков, 4 курс ЛЭТИ К.М. Жеронкин, 4 курс ЛЭТИ И.С. Драчнев, 5 курс СПбГУ И.М. Котина снс, кфмн З.М. Крот, вед.инж. Г.В. Пацекина, нс Л.М. Тукхонен, нс

Лаборатория в 2011 году

Работы проводились по 3 основным направлениям: 1)Аксион (Солнечные + Темная материя (работы выполняются в ПИЯФ) +Борексино) 2) Нейтрино, (эксперимент Борексино, Италия +ПИЯФ стерильное нейтрино) 3) МДП структуры на кремнии (монитор нейтронов, рук. И.М. Котина доклад А.Х. Хусаинова 19.01.12)

Содержание доклада (30 мин.)

- 1) Эксперимент Борексино в 2011 году
- 2) Рассеяние нейтрино на электроне
- 3) Точность измерения 7Ве-нейтрино 5% и потоки pp-, СПО нейтрино
- 4) Осцилляции нейтрино в веществе Земли и вариации скорости счета день-ночь.
- 5) Решение LOW $\delta m^2 \sim 10^{-7} \text{ ev}^2$ отклонено для нейтрино без привлечения данных KamLand.
- 6) Обнаружение рер-нейтрино. Верх мастерства отбора событий.
- 7) Поиск солнечных аксионов с энергией 5.5 МэВ в Борексино
- 8) Поиск аксионов с энергией 5.5 МэВ с помощью ВGO в ПИЯФ
- 9) Поиск солнечных аксионов в ПИЯФ (доклад Е. Унжакова)
- 10) Стерильные нейтрино в Борексино
- 11) Стерильные нейтрино на исследовательском реакторе
- 12) Поиски темной материи в экспериментах DARK SIDE и RED
- 13) Поиски темной материи в эксперименте в ПИЯФ. Аксионы с массой
 - 1-10 кэВ как частицы темной материи. Результаты ПИЯФ.
- 14) Будущее нейтринной (астро)физики. Эксперимент LENA.
- 15) Планы на 2012 год

Список публикаций и докладов в 2011 г.(20)

1. Derbin A.V., Kauynov A.S., Muratova V.N., Semenov D.A., Unzhakov E.V., Constraints on the axion-electron coupling for solar axions produced by Compton process and bremsstrahlung, Phys. Review, D83, p. 023505, (2011).

2. Дербин А.В., Муратова В.Н., Семенов Д.А., Унжаков Е.В., Новое ограничение на массу солнечных аксионов с энергией 14.4 кэВ, излучаемых в М1-переходе ядер 57Fe, Ядерная Физика, Т. 74, №4, с. 620-626, (2011).

3. Дербин А.В., Каюнов А.С., Муратова В.Н., Антонов Н.Е., Драчнев И.С., Новые ограничения на константу связи аксиона с электроном для аксионов, возникающих в результате тормозного излучения и комптоновского процесса на Солнце, препринт ПИЯФ, 2865, 3-15, 2011

4. Derbin A., Kayunov A., Muratova V., Semenov D., Unzhakov E., A Search for the Resonant Absorption of Solar Axions by Atomic Nuclei, DESY, proceeding of the Axion-WIMP-WISP- 2011 workshop, June 2011

5. Derbin A.V and Muratova V.N. for Borexino coll., Search for 5.5 MeV Solar Axions Produced in p(d; 3He)A Reaction with Borexino Detector, DESY, proceeding of the Axion-WIMP-WISP- 2011 workshop, June 2011.

6. А.В. Дербин, А.С. Каюнов, В.Н. Муратова, Е.В. Унжаков, Д.А. Семенов, Поиск резонансного поглощения солнечных аксионов атомными ядрами , научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», Москва, (2011)

7. А.В. Дербин, А.С. Каюнов, В.Н. Муратова,С.В. Бахланов, И.С. Драчнев ,Поиск солнечных аксионов в реакции р+d3He+A , научная сессияконференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», Москва, (2011)

8. Болоздыня А.И., ..., Дербин А.В., Драчнев И.С., , Муратова В.Н., (Коллаборация РЭД) , Проект эмиссионного детектора на жидком благородном газе для наблюдения редких процессов рассеяния /нейтрино и частиц темной материи на атомных ядрах, Научная сесия НИЯУ МИФИ – 2011. Актуальные проблемы физики ядра, частиц, астрофизики и космологии, Москва, 2011

9.Акимов Д.Ю.Дербин А.В., , , Муратова В.Н., Эксперимент по измерению отклика жидкого ксенона для ядер отдачи низких энергий на реакторе ИРТ МИФИ, Научная сессия НИЯУ МИФИ. Актуальные проблемы физики ядра, частиц, астрофизики и космологии, Москва, 2011

10. Derbin A., Fomenko K. for Borexino coll., Study of rare processes with the Borexino detector, 15th Lomonosov Conference on Elementary Particle Physics, Proceedings will be published by World Scientific Publ. Co., Singapore., 2011.

11. Derbin A., Fomenko K. for Borexino coll., Study of rare processes with the Borexino detector, workshop "Speakable in quantum mechanics: atomic, nuclear and sub nuclear physics tests", Trento, Italy, Proceedings will be published, 2011

12. А.В. Дербин, А.С. Каюнов, В.Н. Муратова, Поиск осцилляций нейтрино на исследовательском реакторе, научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», Москва, (2011)

13. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS, Phys. Letters, B696, 191, (2011).

14. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Precision Measurement of the 7Be Solar Neutrino Interaction Rate in Borexino, Phys. Rev. Lett. 107, 141302 (2011).

15. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), First evidence of pep solar neutrinos by direct detection in Borexino, . arXiv:1110.3230 Submitted to Phys. Rev. Lett.., (2011)

16. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Absence of day-night asymmetry of 862 keV Be-7 solar neutrino rate in Borexino and MSW oscillation parameters , . arXiv:1104.2150, accepted by Phys. Rev. Lett., (2011)

17. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Muon and Cosmogenic Neutron Detection in Borexino, Journal-ref: JINST 6:P05005, (2011).

18. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), The Recent Results of the Solar Neutrino Measurement in Borexino. arXiv:1106.3055, Proceedings of the Recontres de Moriond EW session 2011

19. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Search for solar axions produced in the \$p(d,\rm{^3He})A\$ reaction with Borexino detector , Submitted to Physical Review D (2011).

20. Borexino collaboration (Bellini G.,..., Derbin A.V.,..., Muratova V.N. et al.), Precision measurement of the 7Be solar neutrino flux and its day-night asymmetry with Borexino, proceeding of TAUP conference in Munich, September 2011..

Доклады на конференциях в 2011 г.(7)

Axion - Dark Matter - WIMP-WISP- 2011 workshop, Greece, June 2011 Derbin A., Kayunov A., Muratova V., Semenov D., Unzhakov E., A Search for the Resonant Absorption of Solar Axions by Atomic Nuclei, Derbin A.V and Muratova V.N. for Borexino coll., Search for 5.5 MeV Solar Axions Produced in p(d; 3He)A Reaction with Borexino Detector

15th Lomonosov Conference on Elementary Particle Physics, Moscow . Derbin A., Fomenko K. for Borexino coll., Study of rare processes with the Borexino detector,

Speakable in quantum mechanics: atomic, nuclear physics tests, Trento, Italy Derbin A., Fomenko K. for Borexino coll., Study of rare processes with the Borexino detector,

Научная сессия-конференция секции ЯФ ОФН РАН «Физика фундаментальных взаимодействий», Москва, (2011)

А.В. Дербин, А.С. Каюнов, В.Н. Муратова, Поиск осцилляций нейтрино на исследовательском реакторе, А.В. Дербин, А.С. Каюнов, В.Н. Муратова, Е.В. Унжаков, Д.А. Семенов, Поиск резонансного поглощения солнечных аксионов атомными ядрами, А.В. Дербин, А.С. Каюнов, В.Н. Муратова,С.В. Бахланов, И.С. Драчнев Поиск солнечных аксионов в реакции р+d3He+A

+ доклады от кол. BOREXINO, RED, DARKSIDE

2011 – год нейтрино

Март: стерильное нейтрино новые вычисления спектра реакторных нейтрино R_{набл} / R_{пред} = 0.943±0.023 реакторная аномалия Июль: θ_{13} отличен от нуля T2K (Tokai to Kamioka) эксперимент $0.03(0.04) < \sin^2 2\theta_{13} < 0.28(0.34)$ at 90% C.L. Сентябрь: – сверхсветовые нейтрино CerN GranSasso OPERA $v-c/c = (2.48 \pm 0.58) \times 10^{-5}$ Апрель: LMA решение для нейтрино $A_{dn} = 0.001 \pm 0.012(stat) \pm 0.007 (syst)$ Сентябрь: рер-нейтрино (1.6±0.3)10⁸ ст⁻²s⁻¹ Borexino, **Декабрь:** θ_{13} Double Chooz $0.015 < \sin^2 2\theta_{13} < 0.16$ at 90% C.L.

Смешивание и осцилляции нейтрино, LMA MSW

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

2 угла смешивания и 2 Δm^2 масс измерены:

В веществе Солнца

 $\begin{aligned} &\tan^2 \theta_{12} = 0.47 \pm 0.06, \ \theta_{12} = (34 \pm 2)^0, \\ &\sin^2 \theta_{23} = 0.5 \pm 0.15, \ \theta_{23} = (45 \pm 10)^0 \\ &\sin^2 \theta_{13} = 0.025 \pm 0.007, \\ &\theta_{13} = (9 \pm 3)^0 \\ &\operatorname{Im}^2_2 - \operatorname{m}^2_1 I = (7.6 \pm 0.2) \times 10^{-5} \, \mathrm{eV}^2 \\ &\operatorname{Im}^2_3 - \operatorname{m}^2_2 I = (2.3 \pm 0.2) \times 10^{-3} \, \mathrm{eV}^2 \end{aligned}$

Осцилляции в вакууме

 $v_e = v_1 Cos \theta_{12} + v_2 Sin \theta_{12}$ Амплитуда = $sin^2 2\theta_{12}$ Длина = L = (2.5 km) x E [ГэВ] / Δm^2 [эВ²].

Решение = Смешивание нейтрино + осцилляции в веществе = LMA+MSW

Новые результаты Борексино (2011 г.)

1. Вариации день-ночь для 7Ве нейтрино. LMA установлен для нейтрино. Пока нет СРТ нарушения в у-секторе. Обнаружены рер-нейтрино 3. Поток 7Ве-нейтрино измерен с 5% то . Солнечные аксионы с Е = 5.5 МэВ 0 – год антинейтрино ео-нейтрино Сопнечные анти-нейтрино 14 4/1 4/1 Фоновые анти неитрино 410 Переходы в ¹²С с нарушение П

Детектор БОРЕКСИНО (BOREXINO)

ФЭУ, стальная и нейлоновая сферы

Национальная лаборатория Гран Сассо

Подземная лаборатория Гран-Сассо

Состав коллаборации

BOREXINO V V V V V V

Германия:

- Институт Макса Планка, Гейдельберг;
- Технический университет Мюнхена;

Италия:

Отделения Национального института ядерной физики в:

- Генуе;
- Милане;
- Перудже;
- + Лаборатория Гран Сассо;

Польша:

 Ягеллонский университет, Краков;

Россия:

- ОИЯИ, Дубна;
- РНЦ «Курчатовский Институт», Москва;
- ПИЯФ РАН, Гатчина;
- НИИЯФ МГУ, Москва;

США:

- Принстонский университет;
- Технологический университет шт. Вирджиния;
- Массачусетский технологический институт

Франция:

 Седьмой Парижский университет.

Borexino collaboration

Рабочие группы и вклад ПИЯФ в 2011 г.

ЯДЕРНАЯ ФИЗИКА, 2010, том 73, № 11, с. 1987—1993

ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ

ПЕРВЫЕ РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА БОРЕКСИНО

<mark>©</mark> 2010 г. А.В. Дербин *

(от имени Коллаборации БОРЕКСИНО¹⁾)

Петербургский институт ядерной физики РАН, Гатчина

Входим в состав 5 (из 12) рабочих групп:

- 1) ⁷Ве-нейтрино,
- 2) Мюоны и нейтроны,
- 3) Анти-нейтрино,
- 4) *рр*-нейтрино,
- 5) редкие процессы (председатель)

авторы по переписке 1 статьи от колл. в 2011 г.

Две новые РГ образованы в 2011 г. 6) Стерильное нейтрино 7) Скорость нейтрино

рр-: 4p→⁴He +2e⁺ + 2v_e + (26. 7 МэВ) и СNО-цикл

 $^{13}N \rightarrow ^{13}C + e^+ + v_e E_o = 1.2 \text{ MeV}$ $^{15}O \rightarrow ^{15}N + e^+ + v_e E_o = 1.7 \text{ MeV}$ $^{17}F \rightarrow ^{17}O + e^+ + v_e Eo = 1.7 \text{ MeV}$

Излучается 5 нейтрино в ppцикле и 3 нейтрино в CNO-цикле

Солнце производит энергию путем превращения водорода в гелий. Полная выделяемая энергия 26.7 МэВ, из которой 0.6 МэВ уносят нейтрино.

Основная задача БОРЕКСИНО -

регистрация упругого рассеяния ⁷Ве-нейтрино на электроне успешно решена, поток ⁷Ве-v измерен с точностью 5%.

Наиболее интенсивный поток pp-нейтрино составляет 6·10¹⁰ v/см²сек, ⁷Be – нейтрино – 5·10⁹, ⁸B-нейтрино - 6·10⁶. Реактор – 10¹³ v/см²сек

Поток ⁷Ве-нейтрино измерен с 4.8%

Precision measurement of the ⁷Be solar neutrino interaction rate in Borexino" PRL 107 141302 (2011)

Вероятность выживания электронных нейтрино

Pee(0.862)=0.51 +/- 0.07

Вероятность выживания 7Ве- и 8В-нейтрино находится в согласии с LMA MSW. Pee(⁸B, 8.9) = 0.29±0.10 для модели BS07(GS98) SSM в согласии с результатами черенковских детекторов. Отвергнуты модели с нестандартным поведением Рее в переходной области.

Солнечные нейтрино: до и после Борексино

Осцилляции нейтрино в Земле (эффект день-ночь)

⁸В нейтрино MSW LMA предсказывает ~2% асимметрию A_{dn}=2(R_n-R_d)/(R_n+R_d) Измеренные значения - SNO : And = 0.037±0.040 SKI: And = 0.021±0.020

7Ве нейтрино MSW LMA Adn = +0.1% **MSW LOW** Adn = (11-80)%

7Ве- *v: асимметрия день-ночь* А_{dn} = 0.001±0.012±0.007

Обнаружение рер-нейтрино: p+p+e→d+v

Детекторы солнечных нейтрино показали, что в Солнце действительно происходят ядерные реакции. Поток рер-нейтрино предсказан с точностью 1.2%. СNO нейтрино меняется в ~2 раза для high и low Z.

Три последовательных совпадения

Подавление фона ¹¹С в 11 раз при потере 50% живого времени

+ образование позитрония

В ~ 50% распадов формируется ортопозитроний со временем жизни T_{1/2}=3 ns, что предоставлет возможность дополнительной дискриминации фона

Результат для рер- и СКО нейтрино

pep:

R = 3.1 ± 0.6 stat ±0.3 sys/(d 100t) Ф (pep) = (1.6 ± 0.3)· 10^8 см⁻²с⁻¹; эксперимент/SSM=1.1 (MSW-LMA) *CNO:* R<7.9/(d 100t) (95% C.L) Ф (CNO) < $7.7\cdot10^8$ см⁻²с⁻¹

Эксперимент/SSM(hZ) <1.5

First evidence of pep solar neutrino

PHYSICAL REVIEW LETTERS

Ś

First Evidence of pep Solar Neutrinos by Direct Detection in Borexino

G. Bellini,¹ J. Benziger,² D. Bick,³ S. Bonetti,¹ G. Bonfini,⁴ D. Bravo,⁵ M. Buizza Avanzini,¹ B. Caccianiga,¹ L. Cadonati,⁶ F. Calaprice,⁷ C. Carraro,⁸ P. Cavalcante,⁴ A. Chavarria,⁷ D. D'Angelo,¹ S. Davini,⁸ A. Derbin,⁹ A. Etenko,¹⁰ K. Fomenko,^{11,4} D. Franco,¹² C. Galbiati,⁷ S. Gazzana,⁴ C. Ghiano,⁴ M. Giammarchi,¹ M. Goeger-Neff,¹³ A. Goretti,⁷ L. Grandi,⁷ E. Guardincerri,⁸ S. Hardy,⁵ Aldo Ianni,⁴ Andrea Ianni,⁷ D. Korablev,¹¹ G. Korga,⁴ Y. Koshio,⁴ D. Kryn,¹² M. Laubenstein,⁴ T. Lewke,¹³ E. Litvinovich,¹⁰ B. Loer,⁷ F. Lombardi,⁴ P. Lombardi,¹ L. Ludhova,¹ I. Machulin,¹⁰ S. Manecki,⁵ W. Maneschg,¹⁴ G. Manuzio,⁸ Q. Meindl,¹³ E. Meroni,¹ L. Miramonti,¹ M. Misiaszek,^{15,4} D. Montanari,^{4,7} P. Mosteiro,⁷ V. Muratova,⁹ L. Oberauer,¹³ M. Obolensky,¹² F. Ortica,¹⁶ K. Otis,⁶ M. Pallavicini,⁸ L. Papp,⁵ L. Perasso,¹ S. Perasso,⁸ A. Pocar,⁶ J. Quirk,⁶ R. S. Raghavan,⁵ G. Ranucci,¹ A. Razeto,⁴ A. Re,¹ A. Romani,¹⁶ A. Sabelnikov,¹⁰ R. Saldanha,⁷ C. Salvo,⁸ S. Schönert,¹³ H. Simgen,¹⁴ M. Skorokhvatov,¹⁰ O. Smirnov,¹¹ A. Sotnikov,¹¹ S. Sukhotin,¹⁰ Y. Suvorov,⁴ R. Tartaglia,⁴ G. Testera,⁸ D. Vignaud,¹² R. B. Vogelaar,⁵ F. von Feilitzsch,¹³ J. Winter,¹³ M. Wojcik,¹⁵ A. Wright,⁷ M. Wurm,³ J. Xu,⁷ O. Zaimidoroga,¹¹ S. Zavatarelli,⁸ and G. Zuzel¹⁵

(Borexino Collaboration)

¹Dipartimento di Fisica, Università degli Studi e INFN, 20133 Milano, Italy ²Chemical Engineering Department, Princeton University, Princeton, New Jersey 08544, USA ³Institut für Experimentalphysik, Universität, 22761 Hamburg, Germany ⁴INFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km 18+910, 67010 Assergi, Italy ⁵Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA ⁶Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA ⁷Physics Department, Princeton University, Princeton, New Jersey 08544, USA ⁸Dipartimento di Fisica, Università e INFN, Genova 16146, Italy ⁹St. Petersburg Nuclear Physics Institute, 188350 Gatchina, Russia ¹⁰NRC Kurchatov Institute, 123182 Moscow, Russia ¹¹Joint Institute for Nuclear Research, 141980 Dubna, Russia ¹²Laboratoire AstroParticule et Cosmologie, 75205 Paris cedex 13, France ¹³Physik Department, Technische Universität München, 85747 Garching, Germany ¹⁴Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany ¹⁵M. Smoluchowski Institute of Physics, Jagiellonian University, 30059 Krakow, Poland ¹⁶Dipartimento di Chimica, Università e INFN, 06123 Perugia, Italy (Received 14 October 2011)

Аксионы, возникающие в реакции $p + d \rightarrow {}^{3}He + A (5.5 M)$

Search for Solar Axions Produced in the $p+d
ightarrow {}^{3}\!\mathrm{He}\!+\!\mathrm{A}$ Reaction

A.V. Derbin^a, A.S. Kayunov^b and V. N. Muratova^c

arXiv:1007.3387v1 [hep-ex] 20 Jul 2010

St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Russia 188300

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2010, том 74, № 6, с. 848–853 ПОИСК СОЛНЕЧНЫХ АКСИОНОВ, ВОЗНИКАЮЩИХ В РЕАКЦИИ р + d → ³He + *A*

© 2010 г. А. В. Дербин, А. С. Каюнов, В. Н. Муратова

Учреждение Российской академии наук Петербургский институт ядерной физики имени Б.П. Константинова РАН

Солнечный рр-цикл: 4р→⁴He +2e⁺ +2v_e +(26.7 МэВ)

Солнце производит энергию путем превращения водорода в гелий. Полная выделяемая энергия 26.7 МэВ, из которой 0.6 МэВ уносят нейтрино. Мы искали аксионы, излучаемые в 2-х реакциях, которые прямо связаны с реакциями в которых производятся **pp-** и ⁷**Be**- нейтрино.

Солнечные аксионы с энергией 478 кэВ и 5.5 МэВ

Аксионы могут излучаться в М1-переходе ядра 7Li, после электронного захвата в 7Be, и после захвата протона ядром дейтрона. Вследствии большой энергии перехода область исследуемых масс аксиона увеличивается до 5 МэВ. Некоторые модели основанные на концепции зеркального мира [Berezhiani, et al., 2001] или суперсимметрии [Hall and Watari, 2004] разрешают существование аксиона с ассой около 1 МэВ. The fluxes of axions at the Earth in cm⁻²s⁻¹

$$\Phi_{A0}(7Be) \cong 0.1 \times \Phi_{\nu 7Be}(g_{AN}^{0} + g_{AN}^{3})^{2}(p_{A} / p_{\gamma})^{3}$$

$$\cong 5 \times 10^{8}(g_{AN}^{0} + g_{AN}^{3})^{2}$$

$$\Phi_{A0}(pd) \cong 0.54 \times \Phi_{\nu pp}(g_{AN}^{3})^{2}(p_{A} / p_{\gamma})^{3}$$

$$\cong 3.3 \times 10^{10}(g_{AN}^{3})^{2}$$

The expected solar axion flux can thus be expressed in terms of the ⁷Beand pp-neutrino fluxes, which are 4.9x10⁹ and 6.0x10¹⁰ cm⁻² s^{-1.} The flux of 5.5 MeV axions is in 60 times more then 478 keV axions. The additional advantage to look for 5.5 MeV axions is that a background level is lower usually for higher energy. 4 reactions were selected to detect axions.

Detection via axion-electron coupling

The AE CS is more than 4 orders of magnitude lower than for Compton process, so the AE effect can not be taken into account. However, using the different energy dependence $\sigma cc \sim E_A$, $\sigma_{Ae} \sim E_A^{-3/2}$ and Z^5 dependence, the AE effect is more effective to search for low energy axions with detectors having high Z.

Detection via axion-photon coupling

We also consider the possible signals from the decay of axion into two γ -quanta and from Primakoff conversion on nuclei. The amplitudes of the reactions depend on $g_{A\gamma}$.

Escape axions from the Sun

There are 2 main disadvantages of experiments with solar axions: the Sun can not been switched off and axions must to escape from the Sun and reach the Earth

particle	е	р	⁴He	¹² C	¹⁴ N	¹⁶ O	Fe	Pb
in 10 ³⁵ cm ⁻²	6.8	5	0.9	6x10-4	7x10-4	2.3x10 ⁻³	1.5x10 ⁻⁴	5x10 ⁻¹⁰

Constant	g _{Ae}	g _{Aγ}	g _{AN}
Limit	<10 ⁻⁶	<10-4	<10 ⁻³
Process	CC	PC	PD

The axions produced inside the Sun must pass through a layer of 6.8×10^{35} e's/cm² 5×10^{35} p's and 1×10^{35} a's in order to reach the Sun's surface. The Compton conversion of an axion into a photon imposes an upper limit on the sensitivity of Earth surface experiments to the constant g_{Ae} . For g_{Ae} values below 10^{-6} , the axion flux is not substantially suppressed. The similar limitations are for axion-photon (Primakoff conversion) and axion-nucleon couplings (photodisintegration).

Axions decay during the flight

For axions with a mass above $2m_e$, the main decay mode is into an e⁺e⁻pair. If $m_A < 2m_e$ the axion can decay into 2 γ 's. The condition $\tau_f < 0.1 \times \tau_{cm}$ (in this case 90% of all axions reach Earth) yields the sensitivity limits for the constants g_{Ae} and $g_{Av} \vee m_A$.

Borexino response functions for axion processes

1 – axioelectric effect2 – Compton conversion

3 – Primakoff conversion

4 – Axion decay $A \rightarrow 2\gamma$

The Monte Carlo method has been used to simulate the Borexino response to electrons and y-quanta appearing in axion interactions. The response function of the Borexino to the axion's was found MC simulations based on bv **GEANT4 code**, taking into account the effect of ionization quenching dependence of the and the registered charge on the distance from the detector's center.

The uniformly distributed γ 's and e's were simulated inside the inner vessel, but the response functions were obtained for events restored inside the FV. The MC candidate events are selected by the same cuts that was applied for real data selection. The signature of all reactions is peak at 5.5 MeV energy.

Fitting procedure

The spectrum was fitted by a sum of exp and Gaussian functions, the position and dispersion of the later was found from the MC response:

$$N_{th}(E) = a + b \exp(-cE) + \frac{S}{\sqrt{2\pi\sigma}} \exp\left[-\frac{(E_0 - E)^2}{2\sigma^2}\right]$$

The number of counts in the axion peak S was calculated using the maximum likelihood method for Poisson distribution.

$$L = \prod_{i} \exp(-N_i^{th}) (N_i^{th})^{N_i^{exp}} / N_i^{exp}!$$

The upper limit on the number of counts in the peak was found using the profile of maximal values of L for different fixed S when all others parameters were free. The obtained values of Lmax(S) were normalized to unit for S < 0 that allows to select the given confidence level. The goodness-of-fit was found by MC (p = 52%)

Limits on $g_{Ae} x g_{AN} vs m_A$ and $g_{Ae} vs m_A$

Borexino results exclude the new large regions of axion masses (0.01-1) MeV and coupling constants $g_{Ae} \sim (10^{-11} - 10^{-9})$. For hadronic axion with $m_A = 1$ MeV, $g_{Ae} < 2x10^{-11}$. Figure also shows the constraints on g_{Ae} that were obtained in the experiments with reactor, accelerator and solar axions as well from astrophysical arguments.

Limits on g_{Ay} vs m_A for $g_{AN}^3=2.8 \times 10^{-8} m_A$ (KSVZ)

The Borexino results exclude the new large regions of axion masses 10 keV - 5 MeV and coupling constants g_{AV} (2x10⁻¹⁴-10⁻⁷) GeV⁻¹. For higher values g^2m^3 axions decay before they reach the detector, for lower one the probability of axion decay inside Borexino is too low. Borexino limits are more then 2-4 orders magnitude stronger than obtained by laboratory-based experiments using nuclear reactors. New region available for heavy axions is excluded.

Экспериментальная установка с 3" ВGO (Гатчина)

1. В установке использовались сцинтилляционный ВGO детектор. Кристалл из ортогерманата висмута **2.5 кг Ві₃Ge₄O₁₂** был изготовлен в виде цилиндра высотой 76 мм и диаметром 76 мм.

2. Пассивная защита детекторо́в состояла из слоев свинца(100 мм), висмута (~20 мм Ві₂О₃) и меди (10 мм). Общая толщина пассивной зашиты составляла ≈ 130 г/см².

3. Установка была расположена на поверхности Земли и для подавления фона, связанного с космическим излучением, использовалась активная защита, состоявшая из 5 пластических сцинтилляторов.

Спектр BGO детектора, измеренный за 11 суток

идентифици В спектре 4 ярко руется выраженных пика. Пик с энергией 1460 кэВ связан с ⁴⁰К. Пик 2614 кэВ ²⁰⁸ТІ из семейства связан С ²³⁸U. Аннигиляционный пик 511 кэВ. Пик 2103 кэВ связан с вылетом 511 кэВ ү-кванта из детектора. Уровень фона при энергиях > 4 МэВ обусловлен уквантами, возникающими при нейтронов, захвате U проникающими через неполную пассивную защиту.

Энергетическое разрешение (σ = 3.5% / (E, MeV)^{1/2}) при энергии 1460 кэВ составило 100 кэВ.

Уровень фона при энергии 5.5 МэВ составил

0.1 отсчета/ (кэВ кг сутки).

Энергетический спектр BGO – детектора, измеренный в совпадении и антисовпадении с активной защитой. Масса детектора увеличена в 4.5 раза. Уровень фона понижен в 2.5 раза. Разрешение лучше в 1.8 раза.

Сравнение с результатами других экспериментов

Наиболее строгий верхний предел на константу g_{Ae} в области масс $m_A \approx 1$ МэВ получен коллаборацией **Техопо**, изучавшей комптоновскую конверсию аксиона вблизи ядерного реактора, и колл. **ВОREXINO** в эксперименте с солнечными ⁷Li 478 кэВ аксионами. Полученный предел $g_{Ae} \leq 10^{-8}$ менее чем на порядок превосходит наш результат. Чувствительность эксперимента зависит от массы мишени М (кг), уровня фона В (кэВ⁻¹ кг⁻¹ сут⁻¹) и разрешения детектора σ (кэВ) и времени измерений Т следующим образом

 $\varepsilon = \frac{\Im \phi \phi e \kappa m}{sqrt(\phi o \mu)} = \frac{MT}{sqrt(B\sigma MT)} = \sqrt{MT/\sigma B}$

Для улучшения достигнутого результата необходимо увеличить массу детектора в 4 раза, понизить уровень фона на порядок и увеличить время измерений в 4 раза. Все эти меры позволят поднять чувствительность эксперимента к константе g_{Ae} до уровня превосходящего уровень, достигнутый в современных экспериментах.

Ограничения на $g_{Ae} x g_{AN}$ от $m_A u g_{Ae}$ от m_A

На рисунке показаны современные ограничения на константу связи аксиона для широкого диапазона электроном масс аксион, полученные ускорителях (3, реакторах 4), экспериментах на u U3 распада ортопозитрония с испусканием аксиона, в предположении, что аксионы составляют темную материю (7, 8), при поиске резонансного поглощения солнечных аксионов (9) и из динамики звезд (10).

Если аксион существует, Солнце должно быть мощным источником этих частиц. Существует 5 основных источников аксионов: 1. Реакции основного ядерного цикла. Наиболее интенсивный поток ожидается для М1-перехода в ядре ⁷Li: ⁷Be + e⁻ → ⁷Li^{*} + γ; ⁷Li^{*} → ⁷Li+А (478 кэВ) и в реакции p + d \rightarrow ³He + A (5.5 M₃B). 2. Магнитные переходы в ядрах, уровни низколежащие которых возбуждаются за счёт высокой температуры Солнца (⁵⁷Fe, 14.4 кэВ). 3. Аксионы, возникающие в результате фотонов конверсии тепловых В электромагнитном поле плазмы. 4. Тормозное излучение электронов в виде аксионов: $e + Z(e) \rightarrow Z + A$. 5. Комптоновский процесс: $\gamma + e \rightarrow e + A$.

Вычисление спектров солнечных аксионов, связанных с процессами $e+Z \rightarrow Z+A+e \ u \ \gamma+e \rightarrow e+A$

Три установки с Si(Li)-детекторами для поиска резонансного поглощения аксионов

Эксперименты по поиску аксиона и константы связи

Детектирование

	$\boldsymbol{g}_{\boldsymbol{A}\boldsymbol{\gamma}}$	G _{AN}	g _{Ae}
G _{Αγ}	Конверсия в магнитном поле CAST, PVLAS, Tokyo Helioscope,	резонансное поглощение аксионов ядрами ¹⁶⁹ Tm	Аксиоэлектрически й эффект в Ge- детекторе
G _{AN}	Конверсия в поле ядра	Поиск резонансного поглощения аксионов ядрами ⁵⁷ Fe	Аксиоэлектричекий эффект Ві (5.5 МэВ)
g _{Ae}	Конверсия в магнитном поле	резонансное поглощение аксионов ядрами ¹⁶⁹ Tm	Аксиоэлектричекий эффект в Ge- детекторе

Образование

Стерильное нейтрино: осцилляции на длине детектора

Чтобы увидеть осцилляции скорости счета нейтрино различных энергий, связанные с переходами $v_e \rightarrow v_s$ и $v_s \rightarrow v_e$. прямо на размере детектора необходимо:

1. иметь источник нейтрино с размерами меньше длины осцилляций

2. для непрерывного спектра нейтрино энергетическое разрешение детектора должно быть не хуже чем 0.5 МэВ.

Стерильное нейтрино: Борексино

Source	decay	τ [days]	Energy [MeV]	Kg/MCi	W/kCi
⁵¹ Cr	e-capture (E _γ =0.32 MeV 10%)	40	0.746 81%	0.011	0.19
⁹⁰ Sr- ⁹⁰ Y	Fission product β⁻	15160	<2.28 MeV 100%	7.25	6.7
¹⁴⁴ Ce- ¹⁴⁴ Pr	Fission product β⁻	411	<2.9975 MeV 97.9%	0.314	7.6

Результаты моделирования Борексино

Чувствительность Борексино

Проверка СРТ для нейтрино

Планы коллаборации Борексино и новые задачи

- 1. Продолжение очистки сцинтиллятора от ²¹⁰Bi и ⁸⁵Kr
- 2. Проверка 7% сезонных изменений скорости счета
- 3. Измерение СЮО- и рр нейтрино
- 4. Увеличение статистики для антинейтрино, 8В, рер..
- 5. Измерение скорости нейтрино
- 6. Стерильные нейтрино (⁵¹Cr, ³⁷Ar по готовности источника. ⁹⁰Y-⁹⁰Sr, в центре по окончанию программы с.н.)
 8. Поиск двойного бета-распада с Борексино

или CTF (¹³⁰Xe, ¹²⁵Nd)

Эксперимент на реакторе

В настоящем проекте предлагается увидеть осцилляции скорости счета нейтрино различных энергий, связанные с переходами $v_e \rightarrow v_s$ и $v_s \rightarrow v_e$ прямо на размере детектора. Для этого необходимо:

1. иметь источник нейтрино с размерами меньше длины осцилляций

2. для непрерывного спектра нейтрино энергетическое разрешение детектора должно быть не хуже чем 0.5 МэВ.

Спектр реакторных нейтрино

Спектр реакторных нейтрино, это, в основном, сумма нейтринных спектров бета- активных осколков. Испускается ~6 нейтрино на деление. Интенсивность падает на 3 порядка при увеличении энергии нейтрино с 2 до 8 МэВ. Только 30% реакторных нейтрино имеют энергию выше порога реакции обратного бета распада.

Реакция обратного бета-распада

Для регистрации антинейтрино используется реакция обратного бета распада:

$v + p \rightarrow e^+ + n$.

Два последовательных события от позитрона и захвата нейтрона во временном окне, определяемом временем жизни нейтрона в сцинтилляторе (25 мкс при концентрации Gd 0.1%), позволяют надежно выделить данную реакцию.

Ожидаемое число событий на расстоянии 5 метров от зоны реактора мощностью 100 MBm составляет **З события/ (кг сутки)**

для мишени, содержащей 6х10²⁵ протонов (1 кг С_{п3}Н_{п4}).

Осцилляции нейтрино с различными энергиями

При регистрации всех нейтрино, имеющих энергию выше порога реакции, отклонения скорости счета от закона 1/R2 не превышают 1.8 %, если установка находится далее 6 м. В то же время, для интервала энергий нейтрино 3-4 МэВ изменения в скорости счета составляет 9 % на длине детектора 1.5 м.

Детектор нейтрино POSEIDON

Детектор представляет собой паралилепипед с размерами **1.5х1.0х1.0 м³**, просматриваемый с двух сторон (по длине 1.5 м) 72 фотоэлектронными умножителями (ФЭУ125). ФЭУ отделены от объема сцинтиллятора буфером (не сцинтиллирующим) толщиной 30 см, который играет роль "разравнивателя" светосбора и защищает объем детектора от радиоактивности ФЭУ.

Для подавления фона, связанного с внешней *у*-активностью, будет использоваться пассивная **защита из свинца**, общей толщиной **200 г/см²**, что позволит практически полностью подавить внешнюю гамма-активность. Водородсодержащая защита, внутренний слой которой будет изготовлен из борированного полиэтилена, предназначена для уменьшения потока быстрых и тепловых нейтронов внутрь детектора. Сравнительно небольшие размеры детектора допускают использование 2-х слоев активной защиты, до и после защиты из свинца.

Энергетическое разрешение

Расчеты, проведенные с использованием GEANT4, показывают, что энергетическое разрешение, определяемое пространственной неоднородностью, составит ~5% (1σ). Для световыхода 10⁴ фотонов/МэВ (LAB или PXE) и 10 % квантовой эффективности фотокатода (ФЭУ125) регистрируется 210 фотоэлектронов на 1 МэВ, что обеспечивает энергетическое разрешение ~7/(E[MэB)^{1/2} % (1σ).

Пространственное разрешение для е+

Для восстановления координат события используется распределение заряда, собранного передней и задней стенками детектора. Разрешение по X в центре детектора составит **10 см** (*σ*) для позитронов с энергией 1 МэВ. При более высоких энергиях разрешение составит **10[см]** /(**E[MэB]/2)**^{1/2}

Пространственное разрешение по длине детектора

Восстановление координаты события по линии перпендикулярной плоскости ФЭУ (в направлении зоны реактора) с точностью лучше, чем 10 см позволит выделить осцилляции нейтрино на длине детектора. Одновременно это позволит улучшить энергетическое разрешение, связанное с пространственной неоднородностью светосбора и компенсировать потери эффективности регистрации на краю детектора. Времена срабатывания, записываемые для каждого ФЭУ, позволят выполнить $\alpha/\beta/p$ –дискриминацию.

Восстановление координаты нейтрона

Пространственное разрешение для нейтрона (*σ* = **20** *см*) существенно хуже чем для позитрона, однако может быть использовано в качестве дополнительного критерия при отборе событий обратного β-распада.

Чувствительность эксперимента

Для интервала $E_v = (3 - 4) M_{3B}$, скорость счета составляет 900 соб. в сутки. Для Sin²(20) = 0.15 разница в счете переднего (6-6.75 м) и заднего (6.75-7.5 м) объема детектора составит 4%. Для измерения Sin²(20) с точностью 0.015, необходимо 100 суток накопления данных. Оценка сделана в пренебрежении фоном детектора. В интервале 3-4 МэВ находится только 0.28 полной статистики. Чувствительность и надежность эксперимента повышаются при использовании двух идентичных детекторов Д1 и Д2 на расстояниях 6 и 9 метров.

Чувствительность эксперимента

Значения параметров осцилляций нейтрино, которые предполагается исследовать в эксперименте по поиску отклонений скорости счета от $1/R^2$, лежат в области $\delta m^2 = (0.3 - 6) \ \Im B^2$ и $Sin^2(2\theta) > 0.01$.

Поиск темной материи

DarkSide(50, 1k, 20 k) и RED (100, 3t) для регистрации WIMPs

РОССИЙСКИЙ ЭМИССИОННЫЙ ДЕТЕКТОР

DarkSide

Augustana College – SD, USA 鱦 Black Hills State University – SD, USA 鱦 Fermilab – II, USA 鱦 IHEP – Beijing, China 🌉 INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy 🍱 INFN and Università degli Studi Genova, Italy 🍱 INFN and Università degli Studi Milano, Italy 🌃 INFN and Università degli Studi Napoli, Italy 🌃 INFN and Università degli Studi Perugia, Italy 🌃 Joint Institute for Nuclear Research – Dubna, Russia 🜌 Princeton University, USA 鱦 RRC Kurchatov Institute – Moscow, Russia St. Petersburg Nuclear Physics Institute – Gatchina, Russia 🜌 Temple University – PA, USA 鱦 University of California, Los Angeles, USA 鱦 University of Houston, USA 🏨 University of Massachusetts at Amherst, USA 🏢

Рассеяние WIMPs на ядрах

Чувствительность экспериментов за 10 лет возросла на 4-6 порядков

Particle Data Group - WIMPs

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

WIMPs and Other Particles Searches for

OMITTED FROM SUMMARY TABLE A REVIEW GOES HERE – Check our WWW List of Reviews

GALACTIC WIMP SEARCHES Cross-Section Limits for Dark Matter Particles (X ⁰) on Nuclei							
VALUE (nb)	CL%	DOCUMENT ID		TECN	COMMENT		
•••We do not	use the following	g data for averages	, fits,	limits, e	etc. • • •		
			09B	ICCB	Η, solar ν		
		³ ARCHAMBAU	.09	PICA	F		
		⁴ LEBEDENKO	09A	ZEP3	Xe		
		SANGLE	08A	XE10	Xe		
		^o BEDNYAKOV	08	RVUE	Ge		
		(ALNER	07	ZEP2	Xe		
		° LEE	07A	KIMS	Csl		
		⁹ MIUCHI	07	CNTR	$F(CF_4)$		
		¹⁰ AKERIB	06	CDMS	⁷³ Ge, ²⁹ Si		
		11 ALNER	05	NAIA	Nal		
		¹² BARNABE-HE	05	PICA	$F_{10}(C_4F_{10})$		
		13 RENOIT	05	EDEL	73 _{Ce}		
		¹⁴ GIRARD	05	SMPL	$F(C_2CIF_5)$		
		¹⁵ KLAPDOR-K	. 05	HDMS	⁷³ Ge (enriched)		
		¹⁶ MIUCHI	03	BOLO	LiF		
		¹⁷ TAKEDA	03	BOLO	NaF		
< 3	90	¹⁸ ANGLOHER	02	CRES	AI		
-		19 BENOIT	00	EDEL	Ge		
		20 BERNABEI	99D	CNTR	SIMP		
		21 DERBIN	99	CNTR	SIMP		

Эксперимент DARKSIDE в Гран Сассо

Позволяет эффективно разделить сигналы от электронов и ядер

ПИЯФ – тестирование конст. материалов (Ті)

Заседание Ученого совета ОНИ ПИЯФ

Ожидаемая чувствительность DARKSIDE50

Заседание Ученого совета ОНИ ПИЯФ

Российский Эмиссионный Детектор

¹⁷ января ²⁰¹¹ Д.Ю. Акимов, сессия ЯФ ОФН РАН, ИТЭФ

Аксионы – кандидаты на темную материю

Для нерелятивистских аксионов сечение аксио-электрического эффекта пропорционально сечению фотоэффекта для фотонов с энергией равной массе аксиона (Pospelov et al.)

$$T_{ae}(E_{A}) = \sigma_{pe}(E_{\gamma} = m_{A}) \times g_{Ae}^{2} \frac{1}{\beta} \left(\frac{3m_{A}^{2}}{16\pi\alpha m_{e}^{2}} \right)$$

$$10^{-7}$$

 10^{-9}
 10^{-9}
 10^{-9}
 10^{-10}
 10^{-11}
 0^{-11}
 0^{-12}
 10^{-11}
 10^{-11}
 0^{-12}
 10^{-11}
 0^{-12}
 10^{-11}
 0^{-12}
 10^{-11}
 0^{-12}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}
 10^{-11}

Заседание Ученого совета ОНИ ПИЯФ
Particle Data Group data

Invisible A^0 (Axion)	MASS	LIMITS from As	strop	hysics a	and Cosmology
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$					
		¹⁷⁸ ANDRIAMON.	09	CAST	K, solar axions
<191	90	179 DERBIN	09A	CNTR	K, solar axions
<334	95	¹⁸⁰ KEKEZ	09	HPGE	K, solar axions
< 1.02	95	¹⁸¹ HANNESTAD	08	COSM	K, hot dark matter
< 1.2	95	¹⁸² HANNESTAD	07	COSM	K, hot dark matter
< 0.42	95	¹⁸³ MELCHIORRI	07A	COSM	K, hot dark matter
< 1.05	95	¹⁸⁴ HANNESTAD	05A	COSM	K, hot dark matter
3 to 20		185 MOROI	98	COSM	K, hot dark matter
Invisible A ⁰ (Axion) Limits from Nucleon Coupling					
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	ne followi	ng data for averages	, fits,	limits, e	tc. ● ● ●
<159	95	242 DERBIN	09	CNTR	Solar axion
< 1.39 $ imes$ 10 ⁴	90	²⁴³ BELLI	08A	CNTR	Solar axion
		244 BELLINI	08	CNTR	Solar axion
		²⁴⁵ ADELBERGER	07		Test of Newton's law
<360	90	240 DERBIN	07	CNTR	Solar axion
<216	95	247 NAMBA	07	CNTR	Solar axion
$< 1.6 \times 10^{4}$	90	240 DERBIN	05	CNTR	Solar axion
<400	95	249 LJUBICIC	04	CNTR	Solar axion
$< 3.2 \times 10^{-1}$	95 0E	250 KRCMAR	01	CNTR	Solar axion
A^0 (Axion) and Other Light Boson (X^0) Searches in Nuclear Transitions					
		DOCUMENT ID	in chies	TECN	
● ● We do not use the following data for averages, fits, limits, etc. ● ●					
$<$ 8.5 $ imes$ 10 $^{-6}$	90	90 DERBIN	02	CNTR	125m Te decay
		⁹¹ DEBOER	97c	RVUE	M1 transitions
$<~5.5 imes10^{-10}$	95	⁹² TSUNODA	95	CNTR	252 Cf fission, $A^0 \rightarrow ee$
$<~1.2 imes10^{-6}$	95	⁹³ MINOWA	93	CNTR	139 La* \rightarrow 139 La 0
< 2 $ imes$ 10 ⁻⁴	90	⁹⁴ HICKS	92	CNTR	³⁵ S decay, $A^0 \rightarrow \gamma \gamma$
$<~1.5 imes10^{-9}$	95	⁹⁵ ASANUMA	90	CNTR	²⁴¹ Am decay
$<(0.4-10) \times 10^{-3}$	95	⁹⁶ DEBOER	90	CNTR	$^{8}\text{Be}^{*} \rightarrow {}^{8}\text{Be}A^{0}$,
$<$ (0.2–1) $ imes$ 10 $^{-3}$	90	⁹⁷ BINI	89	CNTR	$A^{0} \rightarrow e^{+}e^{-}$ $16_{O^{*}} \rightarrow 16_{O}X^{0}$,

LENA: Low Energy Neutrino Astronomy

The next-generation liquid-scintillator neutrino observatory LENA

Mıcnaei wurm, "" Jonn F. Beacom, Leond B. Bezrukov, Daniel Bick," Jonannes Biumer, Sandnya Choubey, ⁶ Christian Cienniak, ¹ Davide D'Angelo, ⁷ Basudeb Dasgupta, ³ Alexander Derbin, ⁸ Amol Dighe,⁹
 Grigorij Domogatsky, ⁴ Steve Dye,¹⁰ Sergey Eliseev,⁸ Timo Enqvist,¹¹ Alexey Erykalov,⁸ Franz von Feilitzsch, ¹
 Gianni Fiorentini,¹² Tobias Fischer,¹³ Marianne Göger-Neff, ¹ Peter Grabmayr, ¹⁴ Caren Hagner, ² Dominikus Hellgartner, ¹ Johannes Hissa,¹¹ Shunsaku Horiuchi,³ Hans-Thomas Janka,¹⁵ Claude Jaupart,¹⁶ Josef
 Jochum,¹⁴ Tuomo Kalliokoski,¹⁷ Alexei Kayumov,⁸ Pasi Kuusiniemi,¹¹ Tobias Lachenmaier,¹⁴ Ionel Lazanu,¹⁸
 John G. Learned,¹⁹ Timo Lewke,¹ Paolo Lombardi, ⁷ Sebastian Lorenz,² Bayarto Lubsandorzhiev,⁴,¹⁴ Livia
 Ludhova,⁷ Kai Loo,¹⁷ Jukka Maalampi,¹⁷ Fabio Mantovani,¹² Michela Marafini,²⁰ Jelena Maricic,²¹ Teresa
 Marrodán Undagoitia,²² William F. McDonough,²³ Lino Miramonti,⁷ Alexes ndro Mirizzi,²⁴ Quirin Meindl,¹
 Olga Mena,²⁵ Randolph Möllenberg,¹ Valentina Muratova,⁸ Rolf Nahnhauer,²⁶ Dmitry Nesterenko,⁸ Yuri
 N. Novikov,⁸ Guido Nuijten,³⁷ Lothar Oberauer, ¹ Sandip Pakvasa,¹⁹ Sergio Palomares-Ruiz,²⁸ Marco Pallavicni,²⁹ Silvia Pascoli,³⁰ Thomas Patzak,²⁰ Juha Peltoniemi,³¹ Walter Potzel,¹ Tomi Räihä,¹¹
 Georg G. Raffelt,²² Gioachino Ranucci,⁷ Sebut Razzaque,³³ Kari Rummukainen,³⁴ Juho Sarkamo,¹¹ Valerij Sinev,⁴ Christian Spiering,²⁶ Achim Stahl,³⁵ Felicitas Thorne,¹ Marc Tippmann, Alessandra Tonazzo,²⁰ Wladyslaw H. Trzaska,¹⁷ John D. Vergados,³⁶ Christopher Wiebusch,³⁵ and Jürgen Winter¹

¹ Physik-Department, Technische Universität München, Germany
 ^eInstitut für Experimentalphysik, Universität Hamburg, Germany
 ³ Department of Physics, Ohio State Universitä, Columbus, OH, USA
 ⁴Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
 ⁵Institut für Kernphysik, Karlsruhe Institute of Technology KIT, Germany
 ⁶Harish-Chandra Research Institute, Allahabad, India
 ⁷Dipartimento di Fisica, Universitä degli Studi e INFN, Milano, Italy
 ⁸Petersburg Nuclear Physics Institute of Fundamental Research, Mumbai, India

¹⁰Hawaii Pacific University, Kaneohe, HI, USA ¹¹ Oulu Southern Institute and Department of Physics, University of Oulu, Finland ¹²Dipartimento di Fisica, Università e INFN, Ferrara, Italy ¹³GSI, Helmholtzzentrum f
ür Schwerionenforschung, Darmstadt, Germany ¹⁴Kepler Center f
ür Astro- und Teilchenphysik, Eberhard Karls Universit
ät T
übingen ¹⁵Max-Planck-Institut für Astrophysik, Garching, Germany ¹⁶Institut de Physique du Globe de Paris, France ¹⁷Department of Physics, University of Jyväskylä, Finland ¹⁸Faculty of Physics, University of Bucharest, Romania 19 Department of Physics and Astronomy, University of Hawaii, Honolulu, HI, USA ²⁰Laboratoire Astroparticule et Cosmologie, Université Paris 7 (Diderot), France ²¹Department of Physics, Drexel University, Philadelphia, PA, USA ²²Physik-Institut, Universität Zürich, Switzerland ²³Department of Geology, University of Maryland, MD, USA ²⁴II Institut für Theoretische Physik, Universität Hamburg, Germany ²⁵Instituto de Física Corpuscular, University of Valencia, Spain ²⁶DESY, Zeuthen, Germany ²⁷Rockplan Ltd., Helsinki, Finland 28 Centro de Física Teórica de Partículas, Instituto Superior Técnico, Lisboa, Portugal 29 Dipartimento di Fisica, Università e INFN, Genova, Italy ³⁰IPPP, Department of Physics, Durham University, Durham, UK ³¹Neutrinica Oy, Oulu, Finland ³²Max-Planck-Institut f
ür Physik, M
ünchen, Germany 33 George Mason University, Fairfax, VA, USA ³⁴ University of Helsinki and Helsinki Institute of Physics, Finland ³⁵III. Physikalisches Institut, RWTH Aachen University, Germany ³⁶Physics Department, University of Ioannina, Greece

ПИЯФ – search for rare processes 50 кт, ЛАВ, 14С, Y, λ ,..

Cavern

height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w.e.

Muon Veto

plastic scintillator panels (on top) Water Cherenkov Detector 3,000 phototubes 100 kt of water reduction of fast neutron background

Steel Cylinder

height: 100 m, diameter: 30 m 70 kt of organic liquid 30,000 – 50,000 phototubes

Buffer

thickness: 2 m non-scintillating organic liquid shielding from external radioactivity

Nylon Vessel

separating buffer liquid and liquid scintillator

Target Volume

height: 100 m, diameter: 26 m 50 kt of liquid scintillator

50 м

Отдел полупроводниковых ядерных детекторов Лаборатория низкофоновых измерений

НЕЙТРИНО АКСИОН ТЕМНАЯ МАТЕРИЯ

 $\mathbf{g}_{\mathbf{A}\mathbf{\gamma}}$

g_{AN}

g_{Ae}

 $\begin{array}{l} g_{Ae} x g_{Ae} \\ g_{Ae} x g_{A\gamma} \end{array}$

BOREXINO POSEIDON DARKSIDE RED LENA

